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Abstract. Model checking, initially successful in the �eld of hardware

design, has recently been applied to software. One of the chief advantages

of model checking is the production of counterexamples demonstrating

that a system does not satisfy a speci�cation. However, it may require a

great deal of human e�ort to extract the essence of an error from even a

detailed source-level trace of a failing run. We use an automated method

for �nding multiple versions of an error (and similar executions that do

not produce an error), and analyze these executions to produce a more

succinct description of the key elements of the error. The description

produced includes identi�cation of portions of the source code crucial

to distinguishing failing and succeeding runs, di�erences in invariants

between failing and non-failing runs, and information on the necessary

changes in scheduling and environmental actions needed to cause suc-

cessful runs to fail. In addition, this analysis allows a classi�cation of

errors by features such as whether they are purely concurrent (i.e. can

be induced by changing only thread scheduling).

1 Introduction

In model checking [4], algorithms are used to systematically determine whether

a system satis�es a speci�cation. One of the major advantages of model check-

ing in comparison to such methods as theorem proving is the production of

a counterexample that provides a detailed example of how the system violates

the speci�cation when veri�cation fails. However, even a detailed trace of how

a system violates a speci�cation may not provide enough information to easily

understand (much less remedy) the problem with the system. Indeed, when the

model of the system is in any sense abstracted from the real implementation,

simply determining whether an error is indeed a fault in the system or merely

a consequence of modeling assumptions or incorrect speci�cation can be quite

diÆcult.

We attempt to extract more information from a single counterexample pro-

duced by model checking in order to facilitate understanding of errors in a sys-

tem (or problems with the speci�cation of a system). We focus in this work

on �nite executions demonstrating violation of safety properties (e.g. assertion

violations, uncaught exceptions, and deadlocks) but believe it can be extended



to other types of counterexamples. The key to this approach is to �rst de�ne

(and then �nd) multiple variations on a single counterexample (other versions

of the \same" error). From this de�nition naturally arises that of a set of exe-

cutions that are variations in which the error does not occur. We call the �rst

set of executions negatives and the second set positives. Analysis of the com-

mon features of negatives and the di�erences between positives and negatives

may yield a more succinct and useful feedback than reading (only) the original

counterexample.

One approach to analysis would be to de�ne the negatives as all executions

that reach a particular error state (all deadlocks, all assertion violations, etc.).

This de�nition has major drawbacks. A complex concurrent program, for exam-

ple, may have many deadlocks that have di�erent causes. Attempts to extract

any common features from the negatives are likely to fail or be computationally

expensive (for example, requiring clustering) in this case. The second problem

is that positives would presumably be any executions not ending in the error

state, again making comparison diÆcult. In software, at least, we usually think

of errors as occurring at a particular place | e.g., a deadlock at a particular

synchronization, or a failure of a particular assertion or array-out-of-bounds er-

ror at a particular point in the source code. We de�ne negatives, therefore, as

executions that not only end in the same error state, but that reach it from the

same control location. Rather than analyzing all deadlocks, our de�nition focuses

analysis on deadlocks that occur after the same attempt to acquire a lock, for

example. We believe that our de�nition formally captures a simpli�ed version of

the programmer's intuitive notion of \the same error." Positives are then de�ned

as executions that pass through that control location without proceeding to an

error state.

Error explanation is especially important in the context of model checking;

in the event that model checking is applied to software implementations, one of

two cases is likely to hold: the model checking is being done under the guidance

of the designers and implementors of the program only after testing has exposed

most of the less subtle bugs. Any remaining errors are likely to be quite complex

and diÆcult to understand (since discovery of the rare but catastrophic failure is

in some sense the motivation of model checking). The other case in which model

checking is applied to software implementations currently is that the veri�cation

is being performed by model checking experts who are not intimately familiar

with the program being examined, and are relying on a high level speci�cation

of its behavior. In this event, even if simpler bugs are unveiled, understanding

whether they are spurious or indeed involve violations of a correct part of the

speci�cation without an intuitive knowledge of the program can be quite diÆcult.

In either case, automated analysis focusing attention on the most important

parts of the error and highlighting the di�erence between failing and succeeding

runs should be very useful.

This paper is organized as follows: in section 2 we discuss related work. The

de�nitions of negative and positive executions are then formalized in section 3,

followed by a presentation of an algorithm for generating executions to analyze



in section 4. The various analyses currently applied are discussed in section 5. We

then present a larger case study and experimental results in section 7, followed

by conclusions and future work.

2 Related Work

The most closely related work to ours is that of Ball, Naik, and Rajamani [1].

They �nd successful paths to the control location at which an error is discovered

in order to �nd the cause of the error. Once a cause is discovered, they model

check a restricted model in which the system is restricted from executing the

causal transitions to discover if other causes for the error are possible. This error

analysis has been implemented for the SLAM [2] tool.

Sharygina and Peled [13] propose the notion of the neighborhood of a coun-

terexample and suggest that an exploration of this region may be useful in

understanding an error. However, the exploration, while aided by a testing tool,

is essentially manual and o�ers no automatic analysis. No formal notion of other

versions of the same error is presented. Dodoo, Donovan, Lin and Ernst [5] use

the Daikon invariant detector to discover di�erences in invariants between pass-

ing and failing test cases, but propose no means to restrict the cases to similar

executions relevant for analysis or to generate them automatically from a coun-

terexample.

Jin, Ravi and Somenzi [11] proceed from the same starting point of analyzing

counterexamples produced by a model checker. Their goal is also similar: pro-

viding additional feedback in addition to the original counterexample in order to

deal with the complexity of errors. Fate and free will are terms in a concurrent

reachability game in which a counterexample is broken into parts depending on

whether the environment (attempting to force the system into an error state)

or the system (attempting to avoid error) controls it. This is an alternative ap-

proach to understanding errors, and produces a di�erent kind of explanation (an

alternation of fated and free segments).

The work of Andreas Zeller was also an important in
uence on this work.

Delta debugging is a technique for minimizing error trails that works by con-

ducting a modi�ed binary search between a failing run and a succeeding run of a

program [16]. Zeller has extended this notion to other approaches to automatic

debugging, including modifying portions of a program's state to isolate cause-

e�ect chains [15] and discovering the minimal di�erence in thread scheduling

necessary to produce a concurrency-based error [3]. Our computation of transfor-

mations between positive and negative executions was inspired by this approach,

particularly in that we look for minimal transformations.

3 De�nitions

The crucial de�nitions are those of negatives and positives, the two classes of

executions we use in our analysis. While manual exploration of paths near a



counterexample can be useful [13], a formal de�nition of a variation on a coun-

terexample is necessary before proceeding to the more fruitful approach of au-

tomatic generation and analysis of relevant executions. Intuitively, we examine

the full set of �nite executions in which the program reaches the control location

immediately proceeding the error state.

A labeled transition system (LTS) is a 4-tuple hS; S0; Act; T i, where S is a

�nite non-empty set of states, S0 � S is the set of initial states, Act is the set

of actions, and T � S � Act � S is the transition relation. We assume that

S contains a distinguished set of error states (with no outgoing transitions),

� = f�0; � � � ; �ng (representing, e.g., deadlock, assertion violation, uncaught

exception, etc.). In our model, we also introduce a set C of control locations and

a set D of data valuations, such that S = (C �D) [ � , and introduce partial

projection functions c : S ! C and d : S ! D. We write s
�
�! s0 as shorthand

for (s; �; s0) 2 T .

A �nite transition sequence from s0 2 S is a sequence t = s0
�1�! s1

�2�!
� � �

�k�! sk; where 0 < k < 1. We refer to k as the length of t, also denoted

by jtj. We say that a �nite transition sequence t = s0
�1�! s1

�2�! � � �
�k�! sk

is a pre�x of a �nite transition sequence t0 = s00
�0

1�! s01
�0

2�! � � �
�0

k0

�! sk0 if

0 < k < k0 and 8i � k : (i � 0 ) si = s0i) ^ (i > 0 ) �i = �0i). We say that

a �nite transition sequence t = s0
�1�! s1

�2�! � � �
�k�! sk is a control suÆx of

a �nite transition sequence t0 = s00
�0

1�! s01
�0

2�! � � �
�0

k0

�! sk0 if 0 < k < k0 and

8i � k : (i � 0 ) c(sk�i) = c(s0k0�i)) ^ (i > 0 ) �i = �0i). We also de�ne

the empty transition sequence, emp as consisting of no states or actions, where

jempj = 0.

We consider the class of counterexamples that are �nite transition sequences

from s0 2 S0. Given an initial counterexample t = s0
�1�! s1

�2�! � � �
�k�! sk,

where sk 2 � , we de�ne a negative as an execution that results in the same

error state from the same control location (the original counterexample is itself

a negative). Formally:

De�nition: Negative: A negative (with respect to a particular t, as noted

above) is a �nite transition sequence from s00 2 S0, t
0 = s00

�0

1�! s01
�0

2�! � � �
�0

k0

�! s0k0 ,

where 0 < k0 <1, such that:

1. c(sk�1) = c(s0k0�1) ^ �k = �0k0 and

2. sk = s0k0 .

We then de�ne neg(t) as the set of all negatives with respect to a counterex-

ample t. The original counterexample itself is one such negative, and is used as

such in all analyses.

De�nition: Positive: A positive (with respect to t) is a �nite transition

sequence from s00 2 S0, t
0 = s00

�0

1�! s01
�0

2�! � � �
�0

k0

�! s0k0 , where 0 < k0 < 1 such

that:

1. c(sk�1) = c(s0k0�1) ^ �k = �0k0 ,
2. s0k0 62 � , and



3. 8t00 2 neg(t) : t0 is not a pre�x of t00.

We de�ne pos(t) as the set of all positives with respect to a counterexam-

ple t, and var(t) as neg(t) [ pos(t), the set of all variations on the original

counterexample. We will henceforth refer to neg and pos, omitting the implied

parameterization with respect to t.
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Fig. 1. A counterexample, a negative, and a positive.

Figure 1 shows an example. The numbers inside states indicate the control

location of the state, c(s), and the letters beside the arrows are the labels of ac-

tions (in this case drawn from the alphabet fa; bg). The original counterexample

ends in the state A 2 � , indicating an assertion violation. The negative shown

takes a di�erent sequence of actions but also passes through the control location

3, takes an a action, and transitions to the error state A. The positive reaches

control location 3 but in a data state such that taking an a action transitions to

a non-error state.

These basic de�nitions, however, give rise to certain diÆculties in practice.

First, the set of negatives is potentially in�nite, as is the set of positives. On the

other hand, the set of positives may be empty, as an error in a reactive system is

often reachable from any other state. For reasons of tractability we generate and

analyze subsets of the negatives and positives. When only a subset of negatives

are known the third condition in the de�nition of positives cannot be checked;

we therefore replace it with the weaker requirement that t0 not be a pre�x of

any negative we generate.

4 Generation of Positives and Negatives

The algorithm for generating a subset of the negatives (and a set of potential

positives, per the modi�ed pre�x condition) uses a model checker to explore

backwards from the original counterexample. We describe an explicit state algo-



rithm, but it seems evident that SAT based bounded model checking approaches

would also be possible.

We assume that the model checker (MC) can be called as a function during

generation with an initial state s from which to begin exploration, a maximum

search depth d, a control state to match c, an error state �, and a visited set

v. The model checker returns two (possibly empty) sets: n (negatives) and p

(potential positives) and a new visited set v0. The generation algorithm (Figure

2) takes as input an initial counterexample t = s0
�1�! s1

�2�! � � �
�k�! sk and a

search depth d.

generate (t; d)

v := ;
neg := ;
pos := ;
i := k � 1
while i >= 0
(n; p; v) := MC(si; t; d; v)
neg := neg [ n

pos := pos [ p

i := i+ 1
for all t 2 pos

for all t0 2 neg

if t is a prefix of t0

pos := pos n t

return (neg, pos)

Fig. 2. Algorithm for generation of negatives and positives.

The model checking algorithm used is not speci�ed. If a depth limit is not

given each call to the model checker will only terminate upon exploring the full

reachable state space from si. In the case that a depth limit is used, we alter

the behavior of the model checker. When the depth limit is reached, we attempt

to extend the execution to match the original counterexample. This causes the

depth limit to behave as an edit-distance from the original counterexample:

negatives and positives may deviate from the original execution for a number of

actions limited by d. The algorithm for extension, proceeding from a state s is

given in Figure 3. Brie
y, the algorithm checks the state at which exploration

terminates due to depth limiting to see if it matches control location with any

state further along the original counterexample. For all matches, the actions

taken in the original counterexample are repeated if enabled in order to reach

either a negative or a positive.

We use neg and pos below to denote the sets returned by this generation

algorithm, not the true complete sets of negatives and positives.

5 Analysis of Variations

Once the negatives and positives have been generated, it remains to produce

from them useful feedback for the user. Even without such analysis, the traces

may prove useful, but our experience shows that even tightly limited searches will



j := i

while j < k

if c(sj) = c(s)
s0 := s

l := j + 1
broken := false

while l < k ^ : broken

if 9 s00 : s0
�
l

�! s00 ^ c(s00) = c(sl) ^ s00 62 v

s0 := s00

else

broken := true

l := l + 1
if : broken

if s0
�
k

�! s00

if s00 2 �

add transition sequence to s00 to current set of negatives

else

add transition sequence to s00 to current set of positives

j := j + 1

Fig. 3. Algorithm for extension.

produce large numbers of traces that are as diÆcult to understand in isolation

as the original counterexample. It is not the traces in and of themselves that

provide leverage in understanding the error; any negative could have generally

been substituted for the original counterexample, and a positive simply shows

an instance of the program reaching a control location without error. It is true

that one use of the negatives is possible without further analysis: they can be

added to regression tests so that it can be determined if a �x for the original

counterexample covers all found versions of the original problem.

5.1 Transition Analysis

The various analyses we employ are designed to characterize (1) the common

elements of negatives/positives and (2) the di�erence between negatives and pos-

itives. For this analysis, we examine the presence of transitions in the executions

in each set. In particular we compute sets containing projected transitions, pairs

hc; �i, where c 2 C is a control location and � 2 Act is an action. We say that

the �nite transition sequence t = s0
�1�! s1

�2�! � � �
�k�! sk contains hc; �i i�

9n < k : c(sn) = c ^ �n+1 = �. The analysis below can also be computed using

only projected control locations, ignoring actions (or also projecting on some

portion of a composite action, when this is possible).

In transition analysis, we compute a number of sets of transitions, listed in

Table 1. trans(neg) and trans(pos) are complete sets of all transitions appearing

in negatives and positives, respectively. The sets all(neg) and all(pos) (transi-

tions appearing in all negatives or positives) are reported directly to the user.

These may be suÆcient to explain an error, either by indicating that certain code

is faulty or that execution of certain code prevents the error from appearing. Also

reported to the user are the transitions appearing only in negatives/positives,

only(neg) and only(pos). Finally, if non-empty, the potentially causal transition

sets are reported.



Transition Analysis Set De�nition

trans(neg) hc;�ij9t 2 neg : t contains hc;�i
trans(pos) hc;�ij9t 2 pos : t contains hc; �i

all(neg) hc;�ij8t 2 neg : t contains hc;�i
all(pos) hc;�ij8t 2 pos : t contains hc; �i

only(neg) trans(neg)ntrans(pos)
only(pos) trans(pos)ntrans(neg)

cause(neg) all(neg) \ only(neg)
cause(pos) all(pos) \ only(pos)

Table 1. Transition analysis set de�nitions.

The rationale for computing causal sets is that in many cases all(neg) and

all(pos) will contain a number of common elements, due to common initialization

code and aspects of execution unrelated to the error. only(neg) and only(pos)

may also be large sets if the error induces di�ering behavior in the system be-

fore the point at which the error is detected. When non-empty, cause(neg) and

cause(pos) denote sets that are potentially much smaller and denote precisely

the common behavior that di�erentiates the negative and positive sets. The

error cause localization algorithm used in SLAM is comparable to reporting

cause(neg), although it is based on transitions de�ned as pairs of projected con-

trol locations and computation of all(neg) is unnecessary as their analysis only

uses one negative at a time [1].

1 int got lock = 0; public static void lock () f
2 do f Verify.assertTrue (LOCK == 0);

3 if (Verify.randomBool ()) f LOCK = 1;

4 lock (); g
5 got lock++;

6 g
7 if (got lock != 0) f
8 unlock (); public static void unlock () f
9 g Verify.assertTrue (LOCK == 1);

10 got lock--; LOCK = 0;

11 g while (Verify.randomBool ()); g

Fig. 4. Example #1.

Example of Transition Analysis The Java code in Figure 4 (adapted from

an example used by Henzinger, Jhala, Majumdar, and Sutre [10]) calls lock and

unlock methods that assert that the lock is not held and the lock is held, re-

spectively. Verify.randomBool () indicates a nondeterministic choice between

true and false (see Section 6). The bug (line 10 should be inside the scope of

the if starting at line 7) can appear as a violation of either the lock or unlock

assertion.

We begin error analysis from a counterexample in which the unlock assertion

is violated: 1 �! 2 �! 3
F
�! 7 �! 10 �! 11

T
�! 3

F
�! 7 �! 8 �! A. We use

a search depth of 30.



Transition Analysis Set Elements

all(neg) f1; 2; h3; F i; 7; 8; 10; h11; T ig
all(pos) f1; 2; h3; T i; 4; 5; 7; 8g

only(neg) fh3; F i; 10; h11; T ig
only(pos) ;

cause(neg) fh3; F i; 10; h11; T ig
cause(pos) ;

Table 2. Transition analysis example results.

In this case cause(neg) is unchanged by our use of the weaker pre�x con-

straint for positives. Here cause(neg) notes the key points of the unlocking er-

ror: the system chooses not to lock (h3; F i), which means that the decrement

of got lock (10) is incorrect (the lock's status has not been changed this time

through the loop). If we reiterate the loop (h11; T i), it is now possible to try to

unlock when the lock has not been acquired.

5.2 Invariant Analysis

Transition analysis is useful when the control 
ow or action choices independent

of ordering are suÆcient to explain an error. However, the same actions from the

same control locations may be present in both negatives and positives; it may

be that the choice of an action with respect to d(s) rather than c(s) is crucial.

A set-based approach projected on d(s) rather than c(s) faces the problem that

only certain data values are likely to be relevant, rather than the full state.

Instead, we compute data invariants over the negatives and compare them to

the invariants over the positives. Speci�cally, the user may choose certain control

locations as instrumentation points. The value of d(s) (or some projection over

certain variables of the data state) is recorded for each transition sequence every

time the control 
ow reaches the instrumentation locations. We then compute

invariants using Daikon [6] (see section 6 for details) with respect to each of

the instrumentation points over all negatives and all positives. The invariants

for negatives are then compared to the invariants for positives, and the user is

presented with this di�erence.

Example of Invariant Analysis The code in Figure 5 is intended to sort

the variables a, b, c and d in ascending order. The last line asserts that the

variables are ordered. However, the comparisons are not suÆcient to ensure

ordering. Verify.instrumentPoint indicates a point at which d(s) is recorded

(and a name for that instrumentation point). Applying invariant analysis with

a search depth of 30 yields the following di�erences (values after sorting, at the

instrumentation point post-sort, are indicated by primed variable names):

We observe from the negative invariants that a' may be greater than b'.

Because invariant analysis is complete over the negative and positive runs, the

absence of an a' <= c' invariant for negatives also indicates that a' is greater

than c' in at least one negative. Adding only the a, b comparison to the code



int a = Verify.random(4); int b = Verify.random(4); // nondeterministic 0-4

int c = Verify.random(4); int d = Verify.random(4); // nondeterministic 0-4

int temp = 0;

Verify.instrumentPoint("pre-sort");

if (a > b) f
temp = b; b = a; a = temp; g // Swap

if (b > c) f
temp = c; c = b; b = temp; g // Swap

if (c > d) f
temp = d; d = c; c = temp; g // Swap

if (b > c) f
temp = c; c = b; b = temp; g // Swap

Verify.instrumentPoint("post-sort");

Verify.assertTrue((a <= b) && (b <= c) && (c <= d));

Fig. 5. Example #2.

Instrumentation Point Positive Invariant Negative Invariant

pre-sort a >= 0 a >= 1

b <= d

a <= b

a > c

b > c

post-sort a' >= 0 a' >= 1

a' <= b' a' > b'

a' <= c'

b' <= d' b' < d'

d' >= temp d' > temp

Table 3. Invariant analysis example results.

before again model checking and analyzing the resulting counterexample gives

the remaining crucial invariant di�erence: b' <= c' (positive) vs. b' > c' (neg-

ative). Adding this comparison results in code that satis�es the sorting assertion.

5.3 Transformation of Positives into Negatives

Our �nal analysis is based on the intuition that when both negatives and posi-

tives exist, we can imagine \breaking" a positive by changing the least number

of actions required to produce a negative. If a positive and a negative follow the

same path for a long sequence of states and actions, then diverge for a period

before again rejoining paths, the di�erence in actions in the divergent section

may give important insights into the cause of the error. Our extension algorithm

(Figure 3) is intended to �nd such pairs of negatives and positives.

We say that there is a transformation of a positive t = s0
�1�! s1

�2�! � � �
�k�!

sk into a negative t0 = s00
�0

1�! s01
�0

2�! � � �
�0

k0

�! s0k0 when:

1. 9p : p is a �nite transition sequence which is a pre�x of both t and t0.

2. 9u : u is a �nite transition sequence which is a control suÆx of both the

largest pre�x of t and the largest pre�x of t0.

Note that as the �nal states of t and t0 do not share a control location, we

must take the largest pre�xes of both in order to allow for the existence of u.
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A minimal transformation from t to t0 always exists when there is a transfor-

mation from t to t0. We de�ne the minimal transformation as a 3-tuple hkt; tp; tni
where 0 � kt < jtj and tp and tn are either �nite transition sequences or the

empty transition sequence, emp. We may also write (tp) ! (tn) when we are

considering only the actual sequences replaced and not the location from which

they begin (discarding kt allows us to see when the same alteration of actions

from di�erent positions causes an error in a number of positives).

1. Find the p such that p is the largest (maximizing jpj) �nite transition se-

quence which is a pre�x of both t and t0.

2. Find the u such that u is the largest �nite transition sequence which is a

control suÆx of both the largest pre�x of t and the largest pre�x of t0 and u

satis�es the constraint that juj+ jpj � min(jtj; jt0j).

3. kt = jpj

4. tp = skt
�kt+1�! � � � sk�juj. If kt > k � juj then tp = emp.

5. tn = s0kt

�0

kt+1�! � � � sk0�juj If kt > k0 � juj then tn = emp.

When S0 contains a single state, there will exist a minimal transformation

for every pair in pos � neg. Sorting this set by a metric of transformation size

(jtpj + jtnj is one reasonable choice, though this ignores similarities within the

transformation) yields a description of increasingly complex ways to cause a

successful execution to fail. This set (along with the associated positive(s) and

negative(s) for each transformation) can aid understanding of aspects of an error

(such as timing or threading issues) that are not expressible by either transition



or invariant analysis. For example, if a positive can be transformed into a nega-

tive by changing actions that represent thread/process scheduling choices only,

an error can be immediately classi�ed as a concurrency problem. Additionally,

we reapply the transition analysis with the values of tp replacing pos and the

values of tn replacing neg. Concentrating on the changes necessary to cause pos-

itives to become negatives may yield causal transitions when none are discovered

by the �rst analysis (because the context in which the transitions are executed

is important { they are causal only under certain conditions).

Returning to the example in Figure 4, running transformation analysis gives

us two distinct minimal transformations: (3
T
�! 4 �! 5 �! 7)! (3

F
�! 7 �!

10 �! 11
T
�! 3

F
�! 7) and (3

T
�! 4 �! 5 �! 7) ! (3

F
�! 7 �! 10 �!

11
T
�! 3

T
�! 4 �! 5 �! 7 �! 10 �! 11

T
�! 3

F
�! 7 �! 8 �! 10 �! 11

T
�!

3
F
�! 7). The �rst of these can be read as \the error will occur in this execution

if, rather than choosing to acquire the lock (tp), the system, in a state where

get lock == 0, decrements get lock, then chooses to loop around and again

chooses not to acquire the lock (tn)." The second example produces the negative

in which the lock is acquired once, so that it is only on the second iteration

through the loop that get lock's value becomes incorrect with respect to the

guard in line 7.

6 Implementation

We implemented our algorithm for generating and analyzing variations inside

the Java PathFinder model checker [14]. Java PathFinder (JPF) is an explicit

state on-the-
y model checker that takes compiled Java programs (i.e. bytecode

class-�les) and analyzes all paths through the program for deadlock, assertion

violations and linear time temporal logic (LTL) properties. In this implemen-

tation we only consider safety properties. We hope to consider the analysis of

LTL counterexamples in future work. JPF is unusual in that it is built on a

custom-made Java Virtual Machine (JVM) and therefore does not require any

translation to an existing model checker's input notation. Actions of an envi-

ronment not under the control of the Java program are represented in JPF

as nondeterministic choices, introduced with special Verify.randomBool () or

Verify.random (int i) calls which are trapped by the model checker. For ex-

ample, Verify.random(2) will nondeterministically return a value in the range

0{2, inclusive. In terms of the LTS model used above, Act = (t � n), where

t is a non-negative integer identifying the thread executing in the step, and

n is either a non-negative integer indicating a nondeterministic choice result-

ing from a Verify call (or -1, indicating no such call was made). � is the set

fdeadlock; assertion; exceptiong indicating that there is a deadlock, an assertion
was violated, or that an uncaught exception was raised. States are the various

states of the JVM (including states for each member of �). c(s) returns a set of

control locations (bytecode positions), one for each thread in the current state,

allowing for further projection of the control location along each thread.



Our implementation of error explanation makes use of JPF's various search

capabilities to provide a wide range of possible searches during the generation

of variations, including heuristic searches [8].

We have added the ability to produce Daikon [6] trace �les to JPF. Daikon

is a tool that takes trace �les generated by instrumented code and discovers

invariants over the set of traces. We use Daikon for invariant analysis. The other

analysis techniques are implemented inside JPF. In JPF, all executions start

from the same initial state of the JVM, so the full transformation set always

exists. For transition analysis JPF allows various projections on actions, such

as ignoring nondeterministic choice or selected thread, as well as analysis based

only on control location. In the JPF implementation, we universally use, rather

than the c(s) de�ned above, a projection that produces only the control location

of the thread that is executed from a state (c(s; �)). We believe this to be

an improvement in any case where there are well-de�ned control locations for

threads or processes in the LTS model.

7 Case Study/Experimental Results

We applied error explanation to determine the cause of the time-partitioning

error in an early version of the DEOS real-time operating system used by Hon-

eywell in small business aircraft. We have studied this system before [12] and

at that time we didn't know what the error was, only that there was an error

in the system. When we found the error it took us hours to determine that the

counterexample given was in fact non-spurious1, and, more precisely, the error

we were looking for. Given this experience and the fact that the DEOS error is

very subtle we believed this to be a good test of the error explanation approach.

The DEOS system is written in C++ and is approximately 10000 lines of

code | we worked with a 1500 line slice of the system that contains all the

parts necessary to show the error. We also worked with a Java translation of the

code in order to use the JPF model checker. DEOS is a real-time operating sys-

tem based on rate-monotonic scheduling that allows user-threads to make kernel

calls during their execution, for example, they can yield the CPU by making a

WaitUntilNextPeriod call or remove themselves by making a Delete call. Fur-

thermore, since threads can have di�erent priority they can be interrupted by a

higher priority thread when a SystemTick happens (indicating a new schedul-

ing period starting), or, they can use up all their allotted time, indicated by a

TimerInterrupt. The property we were checking was a safety property ensur-

ing time-partitioning | a thread always gets the amount of time it asked for |

checked by an assertion whenever a new thread is to be scheduled.

JPF found the original error in 52 seconds (on a 2.2Ghz Pentium with 2GB

of memory), and then spent another 102 seconds performing a depth-limit 30

analysis to explain the error (�nding 131 variations on the error in the process).

The resulting output indicated the following key points:

1 We abstracted the system by replacing real-time by our own virtual time, hence we

were getting spurious errors from time to time.



{ The Delete call is present in all negatives.

{ The shortest transformations from positive runs to negatives are:

� replacing a WaitUntilNextPeriod with a Delete call;

� inserting a TimerInterrupt and a SystemTick before a Delete call.

This shows that the Delete call is essential to the error, but only in speci�c

circumstances. This matches the cause of the known error, where a Delete call

is performed after a speci�c amount of time has elapsed (the variable indicating

that time has passed and should be subtracted from a thread's budget is not

properly handled during deletion). Note that making a Delete call by itself is

not suÆcient to cause the error, since there are positives containing this call.

It took approximately 15 minutes to analyze the output �le produced from the

error explanation to determine the cause.

We also applied error analysis to concurrency errors such as those in the

Remote Agent [9]. Transformation analysis indicates when an error can be in-

duced by only changing thread scheduling, and shows the minimal changes in

scheduling necessary to induce the error in previously successful runs.

8 Conclusions and Future Work

We propose de�nitions for two kinds of variations on a counterexample discov-

ered during model checking and present an algorithm for generating a subset of

these variations. These successful and failing executions are then used by various

analysis routines to provide users with a variety of indications as to the impor-

tant aspects of the original counterexample. The analyses suggested provide

feedback on (1) control locations and actions key to the error (2) data invariant

di�erences key to the error and (3) means of transforming successful executions

into counterexamples. While further experimental validation is needed, our re-

sults demonstrate that this analysis can be very useful in understanding complex

errors.

The most important area of further research should be improving the meth-

ods of analysis both to provide more useful feedback and to do more automatic

classi�cation of errors. While the goal of routinely reporting \change line i in the

following manner" is unlikely ever to be reached, we believe that better methods

than the rudimentary ones presented here may exist. In particular, automatic

analysis of the transformations between positives and negatives should be taken

a step further than merely noting concurrency-only di�erences. Another possi-

bility is to generate from the negatives an automaton for an environment that

avoids reproducing the error as in the work of Giannakopoulou, P�as�areanu, and

Barringer [7]. It is possible that in some instances such an assumption might

succinctly characterize the error, although as an assumption it would only be an

approximation of the most general environment for the program.
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